NEW SPECIES OF THE AMPHIPOD CRUSTACEAN GENERA PHOTIS AND GAMMAROPSIS (COROPHIOIDEA: ISAEIDAE) FROM CALIFORNIA.

by Kathleen E. Conlan ${ }^{\dagger}$

Abstract

Three new spectes of the amphipod sufertamily Corophioidea have been found at depths of 92 to 2005 meters off we Pacific coast of California. Phatis(Photis) typhops, new species, Photis (Photis) linearmanus, new species, and Gammaropsis (Podoceropsis) ocelhata, new species, arc here described and illustrated, and their morphological relationships will other regional species are discussed.

INTRODUCTION

Three new species wf Corophioidea have been found in benthic collections trom offshore waters of the const ol Catiformia. These are Phoris (Photis) typhlops, new species, aneyeless form recurded from depths of 812 to 2005 meters. Photis (Photis) linwarmumb, new species, an eycd taxon from a single collection at a depth of 92 meters and Gammaropsit (Podocerapsis') oceldata, new species, an uniusual podoceropsid having ficceled but unpigmented eyes. taken al a depth of 590 meters.

The most receat roview of regional species of these generais Conlan (1983). Lists and numbers of regional genera and species can also be fond in overview treaments by Austin (1985). Cadien (1991), and Bouslicld and Staude (1994). The new species are here described and compared with their local relatives. The present study raises the number of North Pacific species of Photis (Phofis) io.32, and of Gamtalaropsis (Podoceropsis) to 9.

The corophioidean genera Phoris and Gammeropais are here assigned to family Isacidae. Fanmilies Isaevae and Aoridae had been merged within family Coropliiidae lyy Bamard and Karaman (1991). However, continued recognition of the Jsaeidae as a distinct corophioidean family is in keeping with the recent work of Myers (1988), and with North Pacific regional comprehensive lishings of lshimaru (1994) and Bousfield and Staude (I994).

ACKNOWLEDGEMENTS

This work was conducted as part of a contract with Science Applications International Corporation for producfion of a guide to the Corophioidea in the Taxonomic Atlas of the Mactoinvertebrate Fautha of the Santa Maria Basin and the Western Santa Barbara Channel. Jim Thomas, Hans Kuck, Joel Martin, Paul Scoth, Terry Gosliner, and Jadith Price provided specimens and data. C-lt Shih and E. L. Bousfield reviewed the manuscript. Susan Laurie-Bourque illustrated the three new species fully treated here.

METHODS

The amphipod specimens were part of a large collection of Corophioidea that was examined for preparation of a taxonomic atlas to the benthic invertebrates of the Santa Maria Basin and the westem Santa Barbara Channel. Right appendages and mouthparts were illustrated from slide mounts in polywinyl lactophenol. Body length was measured from the tip of the rostrum to the base of the telson. Material wats deposited at the Canadian Musew of Nature (CMN), the Califonnien Academy of Sciences (CAS), the Smithsonian Institution. U.S. Muscmin of Natural History (USNM), the Los Angeles Conity Museumof Natural History (NHMLAC), and the Santa Barbara Museum of Natural History (SBMNH).

[^0]
SYSTEMATICS

Photis（Photis）typhlops，new species

（Fig．1）
Material examined．TYPE MATERTAL：Holoype： adult male（USNM，catalogue no，266403），U．S．A．：Califor－ nia：off San Francisco（ $37022.31^{\prime \prime} N, 123019.24^{\prime} \mathrm{W}$ ），station 3－18，26．829．9－91．EPA site $102,1990 \mathrm{~m}, 15$ Sepi， 1991 ，J． A．Blake，collector．Allotype，adult female（USNM，cata－ logue no． 266404 ），same locationi．Paratypes，about 300 individuals（USNM，catalogue no． 266405 （adult males）， 266406 （adult females）， 26 f4407（unsexable juveniles））； 6 males， 8 females， 30 juveniles（CAS，catalogue no．CASIZ 085729）； 6 males， 8 females， 30 juveniles（NHMLAC， catalogue no，LACM 91－190，1）； 6 males， 8 ［emales， 30 juveniles（CMN，catalogue no．NMCC1993－0001），all same Iecation．

OTHER MATERIAL（excluded from the type series）：I juwentefromU．S．A．；Califormia；offPt，Buchon $35^{\circ} 15.72 \mathrm{~N}$ ， $\left.121^{\circ} 04.68^{\circ} \mathrm{W}\right), 396 \mathrm{~m}$ ．Calformia Plase II Monitoring Pro－ gram，Minerals Management Service，Pacific OCS Office． Santa Maria Basin Project，station 020－BSS－01－TX； 2 juve－ niles from same area，off PL San Luis（35005．07＇N： $121^{0}\left(00.75^{4} \mathrm{~W}\right), 390 \mathrm{~m}$ ，station $025-\mathrm{BSR}-01-\mathrm{TX}, 5$ juveniles from same location as preceding， 390 m ，station 025－BSR－ $02-\mathrm{TX} 2$ juveniles from same location ds preceding， 390 m ． station 025－BSR－03－TX； 2 adult females， 4 juveniles from same arca，ofl Purisima PL， $\left.34037.80^{\prime} \mathrm{N}, 121^{\circ} 01.66^{\circ} \mathrm{W}\right)$ ． $591 \mathrm{~m}, 6 \mathrm{Jan}, 1984$ ，station 050 －BSS－ 01 －TX； 1 adult female， 7 juveniles from same area，of Pt．Arguello（ $34033.66^{\circ} \mathrm{N}$ ． $120^{\circ} 56.31{ }^{\circ}$ W）， 590 m ，station 055－BSS－01－TX（all of above SBMNH）； 1 juvenile from Eel River Basin（ $41056.33^{\prime} \mathrm{N}$, $124038.00^{4} \mathrm{~W}$ ）， 552 m ，dissolved oxygen $1.03 \mathrm{mal} / \mathrm{h}$ ，botrom water temp． $5.86^{\circ} \mathrm{C}$ ，silt－clay sediment，\％organic carbon 1．473， 22 Nov．1987，station SB－4（NHMLAC）； 1 juvenile from same area as preceding（ $41^{039}, 77^{\circ} \mathrm{N}, 124^{029}, 33^{\circ} \mathrm{W}$ ）， $524 / 549 \mathrm{mn}$ ，dissolved oxygen $1.6 \mathrm{mil} /$ ，bothom water temp． $5.92{ }^{\circ} \mathrm{C}$ ，sand－silt－clay sediment，存 organic carbon $0.859 /$ $0.782,22 \mathrm{Nov}, 1987$ ，Etation $\$ \mathrm{BB}-12$（NHMLAC）：I fuverile from same area as preceding（ $400^{057.00 '} \mathrm{~N}_{1} 124023.42^{\circ} \mathrm{W}$ ）． $18 \% \mathrm{~m}_{4}$ dissolved oxygen 4.35 mLl ，hothom water lemp， $8.67^{\circ} \mathrm{C}$ ，silt－clay sediment，surganic carbon 0.924 ． 19 Now 1987，station $\mathrm{SB}-14$（NHMLAC） 1 juwenile from sume area as preceding（ $40057.20^{\circ} \mathrm{N}, 124033.20^{\circ} \mathrm{W}, 555 \mathrm{~mm}$ ，dissolyed oxygen $2.51 \mathrm{~mL} / 1$ ，bottom water temp． $6.56^{\circ} \mathrm{C}$ ，silt－clay sedimend，悹 orgamic carbon nol recorded， 18 Nov． 1987. station SB－16（NHMLAC）（all Eel Rived Basin samples collected by MEC Artalylical \＄ystems Inc．，Carlsbad，Cali－ fomia）．

Diagnosis．Eye lacking．Antennae half length of the broly，with long sctac．Coxie I－5，ventral margins with 0－4 long setae．Gnathopod I，capus longer than propodus． propodus slender，palm convex or shallowly excavate．

Ginathopod 2 of male，basis with row of stridulation ridges angled across Iateral face：palm of propodus transverse，with tooth and long spine al palmar defining comer and twossall teeth in palm．

Description．Adult male（ 3.2 mim）Holotype：Head lobe triangular．Eye lacking．Antennae 1 and 2 about equal in length．Antenne I weakly setose，article 3 longer than article f：stecssory Tagellum microscopic button．Antenna 2 moderately setose，flagedlum not pedilomin，longer than article 5，distatly sproose．

Upper lip，epistome triangular．Mandible with $3-4$ raker spines；molar llake etresent；palp strong，article 3 hardly wider distally than proximally，boil articles 2 and 3 with numerous setae，article 2 longer than article 3．Maxilla 1， inner plate wilbout setae；palp narrower than outer plate． Maxilla 2，inoer plate about same widthas outer，with facial setae．Maxilliped，inner plate not teaching end of article 4； outer plate not reaching end of article 5 ：unguis（article 8） about equat in length to article 7.

Perteopods 1－5，ventral margins af coxae with $0-2 \mathrm{long}$ setaccach．Gnathopod I，coxamore anterodistally produced than coxa 2；basis insented mid－proximally on inner face，not densely setose；carpus about equal in length to propodus， anterior margin distally setose；propodus，palm shallowly excavale，defined by single spinet dactyl longer than palm of propotus，posterior（inner）margin with few short setae and cusps．Gnathopod 2．basis，lateral face with row of stridula－ tion ridees；carpus storder than propodus；propodus，width 1.5 times wigthot propodus of gnathopod 1 ，palm transverse， with 2 excavations and looth and spine at detining comer， setae at dactyl hinge less than half length of propodus；dactyl overlapping palin by length of unguis，without tooth with spine and setal cluster proximal of unguis．

Peracopod 3 ，coxet with row of stridulation ridges on ventral margin．Peraeopod 4，cosa．posterior margin not ex－ cavate．Peraeopods 3 and 4 ，basis not expanded，merus wid－ et than cappus and produced anteriorly over less than $1 / 4$ of carpus；dactyl shorter than propodus．Peraeopod 5 ，coxa similar in depth to coxa 4；basis broad，not posterigrly excavate；merus not posterionly exavate；merus and carpus not spinose；propodus with only single long spine at anterodistal comer；dactyl wit力 2 pronounced cusps at junc－ tion of unguls．Peracopots 6 atu 7 ，coxac smaller than coxa 5；otherwise articles similar in shape to peraeopod 5 ，a］－ though hases narrower and dactyl not cusped．

Pleon plates 1－3 not posterodistally notched．Pleon and urosome without dorsally erect setae or cusps．Uropod 1 ， peduncle without lateral cotysial spine proximally or tooth－ like process extendiny wentrally below rami；rami tipped by 1 － 2 shorl spints．Uropod 3 peduncle not spinose；outer ramus neally as long as peduncte and tipped by $1-2$ long Setae，inner ramus aboul I／ 4 length of outer，lipped by single short spine．Telson apices marked by single long seta and small knob．

FIG. 1. Photis typhlops, new species. Adult male, (3.2 mm) HOLOTYPE: whole body, distal articles of gnathopods 1 and 2 (setae omitted), mouthparts, uropod 3, and telson. Adult male 1 (3.4 mm) PARATYPE: distal anticles of gnathopods 1 and 2 (setae omitted). Juvenile male (2.9 mm): distal articles of gnathopod 2 (setae omitted). Adult female br". [II. (3.4 mm) ALLOTYPE: gnathopods] and 2. Adult female I br. 111. (3.3 mm) PARATYPE: gnathopods 1 and 2 , magnifications (setae omitted). Lateral views: whole body, maxilla 1, uropod 3, and telson; other views medial. Scale 0.1 mm .

Condilion. With all appendages. Right appendages, mouthparts, and telson slide mrounted.

Adult female. Body length 3.4 mm . Ginathopod 1: carpus and propodus similar to but slightly slenderer than in male. Gnathoperd 2, basis wilhout stridulation ritges; propodus, palm convex. Brood plates moderately wide, setae without hook at each tip. Other features as in male.

Condition. With all appendages. Right appendayes. monthparts, and telsom slide mounted.

Variation. The narrowness and amount of indentation or the propodus of gnathopod 1 of the male varies, becoming namower and more excavate in larger males. Tooth length in the palm of gnathopod 2 is also greater in larger animals. The number of lones setac on the ventral margin of coxae $1-5$ may beas muchas 4. Immature femates bear aselose brood plates or lack them altogether.

Etymology. From the Greck typhlops, mearing blind, alluding to the absence of pigmented eyes in this species.

Distribution and ecology. Collected from $188-2005 \mathrm{~m}$ off Santa Barbarah, San Francisco, and Eureka-Crestent City, In the San Francisco collections, Photis twh hops was found from 812 m to 2005 m depth, with density peaking at 9500 individuals/ $/ \mathrm{m}^{2}$ at 1770 to 1990 m depthi, At this density the auphipods were clearly wisible as a thick mat concentrated at the sediment surface. This is the first known recond of a deep water amphipod mat (J. A. Blake, pers. comm., 7 Dec. 1992). Evidently Phoris typhlops can occur in areas of low dissolved oxegen, julliging from the Eureka-Crescent City collections.

Taxonomic Commentary. Two oher blind species of Photis are known to occur in the North Pacific: Phoris (Photis) kurilica Gurianoyal and Photis (Cedrophotis) malinatco J. L. Barnard. Photis kurilica differs from P. typhops in the following respects: head lobe rounded ventrally; antenna 1. flagellum \& articles, slighty fonger than peduncle; antenna 2, peduncle article 43 times as long asarticle 3 : gnathopod 1 of malc, basis, anterior and posterion margins covered with abundant plumose sctae, carpus equal in length to propodus: propodus, palm concave; gnathopod 2 of male, coxa with 9 long sctae on ventral margin, basis with abundant short, stout setae anterionty and long, slender setae posteriorly, propodus, palm soncave, without tooth: gnathopod 2 of female. propoodus, palm shallowly concave; uropad 1 with 8 - 11 lateral spines on peduncle and ramis; uropod 2 with 2.12 lateral spines on pedurcle and rami, Photis huritica has only been recorded from the east const of Russia (Gurjanova. 1955).

Photismalinalco. From the Cedros Trench, Baja California. has a much longer inticer ramus on the third uropod (half the length of the outer-adefining characler of the subgenus), more slender propodus of gnathopods I and 2, broader cosa 1, and less spinose uropods I and 2 (1. L. Bamard, 1967).

Another blind spectes of Photis is the South Allantic athyssal Photis coeced 3.L. Banaard, This species differs from P, tquitops as follows: antema I, article 3 only slightly longer than article 1 ; gnathopod 1 of female, coxa square. basis with 3 long setat anteriarly and 1 posteriorly; gnathopod 2 of female, coxal seluare. prepodes ruych narrower than wride peraeopod 3 , coxacovering only $1 / 3$ of basis ${ }^{2}$ peracopod 5 , basis, width $3 / 4$ of length; uropod I rami, outer ramus with 1 spine, inner ramus with 0 (J. L. Barnard, 1962).

All fourblind species of Photis possess distinctly longer anterniad than in eyed species of Photis, a characteristic which apparently conelates with lack of visual sensory organs.

Photis (Photis) linearmanus, new species

(Fig. 2)
Material examined. TYPE MATERIAL: Holotype: adulı mate (USNM. catalogue no. 239498), U,S.A.: Catifornia: off Purisima Point ($34^{\circ} 43,0^{\circ} \mathrm{N}, 120^{\circ} 47.4 \mathrm{~W}$), 92 m , May 1987. California Phase II Monitering Program, Minerals Management Service, Pacific OCS Office, Santa Maria Basin Pruject, cruise 1-3, station R-4, replicate 1, Battelle, collector.

Diagnosis. Eyes small, pigmented Coxae 1-5, ventral margins with 2-II long setac. Gnathopod 1, carpus shorter than propodus; propodus broad; palm strongly excavate in male. Gnathopod 2 of male, basis with rew stridulation ridges on anterodistal margin; palm of propodus oblique. lincar, defining corner not marked by spine or change of angle, with 2 small teeth in pralm.

Description. Adull male (3,4 min) Holotype: Head lobe triangular. Eye black. oval.

Upper lip, epistome trianguler. Mandible with 3 raker spines; molar flake present; palp strong, article 3 hardly wider distally than proximally, both articles 2 and 3 with numerous setae, article 2 longet than article 3. Maxilla I. inner plate without setae; palp narrower than outer plate. Maxilla 2. inner plate aboul same width as cuter, with facial setae. Maxilliped, inner plate not reaching end of article 4; (outer plate not reaching end of article 5: unguss (article 8) athout equal in length to article ?

Feraeopods 1-4, ventral margin of coxa 2 wilh 11 long setae; coxae 1, 3. and 4 wilt $2-5$ selac. Gnathopod 1, coxa different in shape from coxa 2, narrowed distally; basis inserted midway on inter face, nol densely setose; carpus storter than propoclus, anterior margin setose only at anterior junclion with propodus: propodus, palm concave, defined by single small spinc; daclyl orily as long as palm of propodus, posterior (imer) margin will few short setae and cusps. Gnathopod 2, basis, anterodistal margin with few stridulation ridges; carpus shorter than propodus; propodus, width

FIG. 2. Photis linearmanus, new species. Adult male (3.4 mm) HOLOTYPE. Lateral views: whole body, mandibles, and maxilla 1 ; other views medial. Scale 0.1 mm.

1. 7 times width of proporlus of gnathopod 1 , palm oblicque, with shelf at dactyl and shallow protuberance midway: setae at dactyl hinge nearly as long as propodus; dactyl scarcely overlapping palm. inner margin evenly curved, with spine and setal cluster proximal of unguis.

Peraeopod 3, coxat with row on stridulation ridges on ventral margin, Peraeopod 4, coxa, posterior matigin not excavate. Pergerporls 3 and 4, tasis not expanded; merus wider than carpus and produced anteriorly over aboun $1 / 4$ of carpus; dactyI shorter than propodus. Peraeopod 5, coxa similar in depth tocoxa 4. Peraeopods 6and 7, coxac smaller' than coxa 5; other articles of peracopods s.7-7 lacking.

Pleon plates $1-3$ not posterodistally nothed. Pleon and urosome without dorsally erect setae or cusps. Uropod 1_{1} peduncle withoul lateral eodysial spine proximatly or loothlike process extending yentrally below rami; jami tipped by 1 shon spine. Urepod 3, peduncle with single spine ventrally at origin of rami; outer ramus $2 / 3$ lenglh of peduncle and tipped by 1 long seta; inner ramus about I/4 length of outer rantus, fipped by single shoyt spine. Telson apices marked by
single long seta and small knob.
Condition. Without antennae, right peracopods $4-7$, and lefi perateopods 5-7.

Adalt Female. Unknown.
Eytmology. From the Latin, linearis, meaning linear, and manus, meaning land, referting to the oblique, nearly lintear palm of the proporl of gnathoped 2 of the mature male.

Distribution. K nown only from thissingle collection in Santa Mania Basin, al 92 m in depth.

Taxonomic Commentary. This is the only species on the northeastern Pacific coast whose adult male has an oblique palm on the propodus of the second grathopod. The relative sparsity of setae on the wentral matgins of the coxae, the cluster of long selae at the origin of the dactyl on the male"s gnathopod 2 , and the concave patm of the male's gnathopod I are alsodistitictive, although not urique anong regional species.

Gammaropsis (Podoceropsis) acellata, new species
(Fig. 3)

Material examined. TYPE MATERIAL; Holoype: adule male (USNM, multague no 239495), U.S.A.: California: off Pt. Agguello ($\left.34033,66^{\prime \prime} \mathrm{N}, 120^{\circ} 56.3 \mathrm{II}^{\prime} \mathrm{W}\right), 590 \mathrm{~m} .5$ January 1984. California Phase II Monitoring Proyram, Minerals Mantagemen! Service, Pacific OCS Office, Santa Mania Basin Praject, station055, BSS-01-TX, MBC Applied Envitonmental Sciences. collector. Allotyne, adula female (USNM. catalogue no. 239496), same location. Paratypes: 1 adolt female, 3 juveniles (USNM, cutatogue no. 239497): 2 adult femades, 2 juweniles (NHMLAC: catalogue no. LACM $84-285.1$) 2 adult females. 2 juveniles (SBMNH , catalngue no. 35646): 2 adult females. 2 juveniles (CMN, catalogue no. NMCC1993-003), all from the same location.

Diagnosis. Eyes weakly laceted, unpigmented. Antennat, setae maximally as long as last pednomar artione. Uropod 1, peduncular vential spinous process less than half length of shoricst ramus, Goathopod 2 of male, propodus: palto nearly transverse, centrally notched, and defined by I spine and change in angle; dactyl not longer than palm. Peraeopod 5 of male, basis shallowly exatwate on posterior matgin. Gnathopod 2 of fermale, propodus, palm shallowly excavate.

Description. Adult male (3.8 mm) Holotype: Head lobe triangular, but not anteriurly acute. Eye oval, with about 12 urpigmented facets, Antennac 1 and 2 equal in length. Antental I moderately setose with long setae posteriorly, article 3 longer than article 1 ; accessory flagellum microscopic button. Antenna 2 moderately setose, with loteg selac also, tlagellum not pediform, longer than article 5, distally spinose.

Upper lip, epistome acutely produced. Mandible with 5 raker spines; molar Ilake present; palp strong, article 3 hardly wider distally than proxitrially, both atticles 2 and 3 with numerous setae, article 2 longer than article 3. Maxilla 1 . inner plate with single long seta; palp somewhat narrower than outer plate. Maxilla 2, inner plate nearly as wide as outer, with tow of facial setae. Maxilliped. innerplate nearly reaching end of article 4: outer plate not reaching end of anticle 5; unguis (article 8) as tong as article 7.

Peraeopods I-4. coxac, wentral margins with manute setae only. Gnathopod I, coxa sitnilar in shape to and not shatlower than coxa 2; basis inserled mid-distally on inner face, now sctose anterodistally; carpus longer than propolus. with anterodistal cluster of setac; propodus nearly simple, palm indistinct, defined by single long spine; dactyl much longet than palm of propodus, posterior (imer) margin with several shor setae and cusps. Gnathopod 2. basis without stridulation ridges: carpus shorter than propodus; propodus, width 2.5 times width of propodus of gnathopod 1, paltro nearly transwerse, with protuberatice near origin of dactyl
dollowed by oual incision, spine at palmar comer, setae at dactyl hinge alomut $3 / 2$ lengeth of propedus, dactyl not toothed, unly as long as patm.

Feracopod 3, chat withoul stridulation ridges on ventrat margin. Perdeopod 4, coxa, posterior margin not excavate. Peraeopods 3 and 4 hasis not exparded, merus wider than but hardly produced over carpus'; dactyl not elongate, much shorter lthin propodus. Peraeopods, coxa as deep as coxa 4; basis moderately boad, shallow ly posteriorly excovate in aulult male; merus shallowly concave posterictly; carpus With cluster oll spines all posterion junction of propodus; propodus with tew spines along anterior margin; dectyl not cusped. Peraeopod 7. woxa not expanded. Peraeopods 6 and 7 similar in shape lo praeopod 5. although bases narrower.

Preon plates 1- $\mathbf{3}$ wilh few minute setate posterodistally but withon cusps cr ridges. Urosome segments 1 and 2 with pair of dorsally erect seae but withoul cusps. Uropod I, peduncle withont lateral ecdysial spines, but with spinous process extending wentrally betow rami about I/3 length of outer ramus, rani tipped by 2-3 spines. Uropod 3, peduncle spinose dorsatly at origin of rami; outer ramus nearly as long as peduncte and lipped by $1-2$ long setae, intier farmus as long as outer, tipped by 1 spine. Telson apices marked by nipple and setal cluster.

Condition, Without perateopods 5-7.
Adult female ov. (4.4 mm) Alloype; Gnathopod 2_{2} propodus, palm shallowly excavate. Brood plates moder. ately wide, setae with book at each lip. Other features as in male.

Condition. Without righ peraeopods 4,5 , and 7 , and left peraleopods 6 and 7.

Etymology, From the Latin ocellata, referring to the relatively small unpigmented eyes of this spectes.

Distribution. Known only from this single location in the Santa Maria Basin, at 590 m in depth.
'Taxonomic Commentary. The facetedbutumigmented eye disninguishes Gommaropsis ocellata from other members of the subpenus on the North American Pacific coast. Another deepwater species, Gammaropsis (Pedoceropwis) kermadeci Stebbing, also lacks pigmethed eyes, but differs considerably from G. ocethara in having a much brader propodus of gnathopods 1 and 2 , a more enlarged and transverse palm on the propodus of the male gnathopod 2 , and a longer carpus relative to the merus on peraeopods 3 and 4. The body is also dorsally setose, which is not the case in G. oceltara. Gammaropsis ocellata most closely resembles G. (P). bamardi Kudryashow and Tzvedkowa, which has been described from southern and westem Sakhalin, Russia $(500 \mathrm{~N} .1450 \mathrm{~W}$) and Wancouver Island, British Columbia $\left(48^{9} 48^{\prime} \mathrm{N}_{+} \mathrm{I} 25^{\circ} 12.5^{\prime} \mathrm{W}\right)$ (Kudryashov and 'zwetkova, 1975 ; Conlan, 1983). Gammaropyìs oceNara differs from G. bamardi in having an unpigmented eye, more transverse

FIG. 3. Gammaropsis ocellata, new species. Adult male (3.8 mm) HOLOTYPE: whole body, distal articles of gnathopods 1 and 2 (setae omitted), mouthparts, and telson; Adult female (4.4 mm) ALLOTYPE: gnathopods 1 and 2, Lateral views: whole body, mandibles, and maxilla 1 ; other views medial. Scale 0.1 mm .
pahn of grathopod 2 in the male, more concave palm of gnathopod 2 in the fernale. and less excavate peraeopod 5 basis in the male.

DISCUSSION

Photis ryphops. and G. ocehara demonstrate the fendency of deepwater or cavernicolous amphipods to lose eye pigmentation and/or facets and lengthen their antennae. Sinue no phylelic treatment has been developed for either genus, it cannot be dermmined wherher these species bear other aponorptric features. Photis tpphlops and P. finearmanas betong to the poorly setose group or pholids which lack a dense fringe of setae on the ventral smargin of the coxae. Males of both species are stridulators and the second gnathopods are moderately sexually dimorphic. Suridulation is the norm for photids, and is presumably oll wallue for communicating mating intent, particularly in the close comnnu-
nity contact that was found for Photistyphlops, Gommoropsis ocellata shows the same sort of sexual trats as other memhers of the subgenus. The subgenus is very conservatiwe in its range of sexualdimorphism. Gammaropsis oceltata shows Iessexaggerated alteration of the second gnathopod and rifth peraeopod that in some other species, suggesting that the specimen described here may not have reached fully mature size. However the boss of eye pigmentation is significant. and unique in the genus.

REFERENCES

Austin, W. C. 1985. An annotated checklist of marine in $=$ vertebrates of the cold temperate northeast Pacific. Khyoran Marime Laboratory, Cowichan Bay,B.C. Vots. I-III: 682 pP .
Barnard, J. L.. 1962 . South Atlantic abyssal amphipods collected by R. W. Yema, Abyssal Crustacea, Vema Research Series 1: 1-78.
1967. Bathyal and abysxal garmmaridean Amphipoda of Cedros Trench, Baja Califortiá. Bull. U. S. Natl. Mus. 260: 1-205.
\& G. S. Karaman, 199 L . The familics and gencra of marine gammaridean Amphipoda (except marite gammaroids). Rec. Austral. Mus. Suppl. 13. 866 pp .
Bohstield, E. L. \& C. P. Stade. 1994. The impact of J. L. Batnard on North American Pacific amphipod research: A Tribute. Amphipacifica I (1): 3-16.
Cadien, D. 1991 . List of the marine amptipud faunas of the Temperate and Boreal Northeastern Pacific Oceant inncluding literature records of occurrence belween Bahia San Quintio. Baja Califormia, and the south side of the Aleutian islands, incorporating nomenclatural changes Iisted in Barnard \& Karaman, 1991. SCAMIT Tech. Publ., Sept. 1991, 21 pp.
Conlan, K. E., 1983. The amphipodsuperfamily Corophiondea in the northeastern Pacific region. 3. Family lsaeidae: systematics and distributional coology. Natl, Mus, Nat. Sci. (Ottawa), Publ. Nat Sci, 4: 1-75.
Gurjanowa, E.F., 1955. Novye vidy bokoplavov (Amphipoda,

Gammarideab iz sevenoi chasti Tixogo Okeana. Trud. Zool. Inst. Akad. Nauk SSSR 18: 166-218.
Ishimaru, S., 1994. A catalogue of gammaridean and ingotliellidean Amphipoda recorded fromit the vicinity of Japan, Rept, Sado Mar. Bio. Sta_, Nitgata Univ, No. 24: 29.86.

Kudryashow, V. A. \& N. L. Tzvetkova, 1975. New and rate species of Amphipoda (Gantnatidea) from the coastal waters of the South Sakbalin. Zool. Zhur. 54: 13061315. (In Russian).

Myers, A. A.r 1988. A cladistic and biogeographic analysis of the Abrinac Subfamity now. Crustabeana, Suppl. 13: 167-192.

LEGEND FOR FIGURES

GN - gnathopod; JV - juvenile; LL - lower lip; LFT - left; MD - mandible; MX - maxilla; MXPD - maxilliped; PLP = palp; RT = right; T - telson; UL - upper lip; $\mathrm{U}=$ - uropod.

Vol I, No. 2. ERRATA OF SUBJECT MATTER

Editorial.

p. I. The correct address for Roy J, Kropp is: Batelle Ocean Sciences, Duxbury, MA 02332 USA.

Paper No. 1* Pleustinae

p. 42 et segu. Apologies are extended to readers who may have encountered difficulties in connecting labels with figures,

Paper No. 2: Phoxocephalidae.

p. 83. The tribute to Dr. Arthur May should read:
"The species Mandibulophoxws may' Jarren \& Boustield, 1994, is named in bonour of Dr. Arthur W. May. President and Vice-Chancellor of Memorial University, St. John's,

Newfoundland, and former Fresident, Natural Sciences and Engineering Research Council of Canada*.
p. 77 et segu. Apologies are extended for the heavy owerprinting of the plates, esp. Figs. 8, 17, 28, 29,
p. 102 , et sfgu, Berkeley Sd, - vorrected to Barkley Sd.
p. 120, Fig. 27. Reversed curved line on peracon segment 2 should be removed.
p. 125. Add to the bottom of the page:
" H . videns is similar to H. combarae and H. eliasi".
p. 147. All references following Austin, W. C. and before Barnand. K. H... are attributable to Bamard J. L.

[^0]: ${ }^{1}$ Canadian Museum of Nature. P.O. Box 3443, Station D, Ottawa, Ontario, Canada K IP 6P4.

